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An unconditionally stable numerical algorithm for the modified
Korteweg—de Vries equaticn based on the B-spline finite element
method is described. The algerithm is validated through a single soliton
simulation. In further numerical experiments forced boundary conditions
u = U, are applied at the end x = 0 and the generated states of solitary
waves are studied. By long impulse experiments these are shown to be
generated periodically with period 47 ; proportional to U/ 0‘3 and to have
a limiting amplitude proportional to Uy, This limit is achieved by all
waves, after the first, provided the experiment proceeds long encugh.
The temporal development of the derivatives UJ'(Q, 1), /{0, 1) and
U"(0. 1) is also periodic, with period AT4. The effect of negative
forcing is to generate a train of negative waves. The solitary wave states
generated by applying a positive impulse followed immediately by an
negative impulse, of equal amplitude and duration, is dependent on the
period of forcing. The solitary waves generated by these various forcing
functions possess many of the attributes of free solitons. © 1994
Academic Press, Inc.

1. INTRODUCTION

The modified Korteweg—de Vries (MKdV)} equation
plays a significant rdle in the study of non-linear dispersive
waves. It has been found to describe a wide class of physical
phenomena such as acoustic waves in anharmonic lattices
[17 and Alfén waves in collisionless plasmas [27].

Analytical studies of the MK dV equation have been given
by several authors [1-3]. When the normalised MKdV
equation

M+ et F e =0, (1)

where the subscripts ¢ and x denote differentiation and ¢
and p are positive constants, is solved analytically in an
unbounded region with the physical boundary conditions
1 —0as x — +oo it has a solution of the form [1]

u(x, 1) = kp sech(kx — kx, — k>ut), @)
p=-/6u/e,

which represents a single soliton originally sited at x,
moving to the right with velocity k24, Such solitons may
have positive or negative amplitudes depending on the sign

of k, but all have positive velocities. It is expected that this
analytic solution will also be valid for bounded regions
which are sufficiently large.

The exact two-soliton solution, under the conditions
given above, is [4]

ulx, ty=ip(logLf*/f 1)

where * denotes the complex conjugate and

f=1+iexp(n)+iexpln;) — B expli +n2),
Hy= kX — k4,

pe (ke

ki +k)
This represents two solitons of amplitudes k;p and
velocities kf. 1. When the soliton with the larger amplitude is
originally sited on the left, a collision eventually occurs

during which each wave undergoes a phase shift of
magnitude

where f=1,2,

3= djk,,

(3)
4 =log(1/f),
that of the larger being positive and that of the smaller being
negative.
Solutions of the MKdV equation subjected to the above
boundary conditions obey an infinity of conservation laws
of which the lowest four invariants are [3]

11=f u dx,
—o
o
12='[_w u? dx,
(4)
(4 b1
I3=JL Wiy dx,
2
Ia=jm Hs*é%uzu2+——18‘u us |\ dx.
e £ x 82 xx
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The physical boundary conditions usually appropriate
for the Korteweg—de Vries (KdV) and the regularised long
wave (RLW) equations are ¥ —0 as x — +co. However,
when these eqgations are solved over a semi-infinite region
0 < x < oo with a non-homogeneous boundary condition
#=unu,, a constant, at x=10, a source of solitary waves
develops at the point x =0 [5-77 and boundary forcing is
said to occur. In this paper the effects of such a boundary
condition on solutions of the MKdV equation are studied
through computer simulation.

Numerical solutions using pseudospeetral methods, split-
step Fourier methods, and B-spline finite element methods
have been given [3,4,8]. We have previously used the
B-spline finite element method in the study of solitons and
solitary waves of the KdV and other non-linear wave
equations [8-107.

The B-spline finite element method differs from the usual
finite element formulation in that the parameters of the trial
function are not the nodal values of the variable v and its
derivatives but are the coefficients 9, of the B-splines which
form the local element trial functions. The nodal values are
related to 4, through simple linear relationships and so they
are easily obtained when required. An important advantage
of this approach is that the 4, are all of the same type,
whereas in the conventional approach function values and
derivatives which may be of very different orders of
magnitude are mixed together in the nodal vector. A second
advantage is that B-spline finite clements have higher order
continuity than Hermite ¢lements of similar order. Recently
the B-spline finite element method has been extended to a
non-uniform mesh [11]. Work is in hand to extend its
application aiso to two dimensions.

The Galerkin approach with cubic B-spline finite
elements used for the numerical solution of the quadrati-
cally non-linear RLW [9] and KdV [12] equations leads
to accurate, unconditionally stable algorithms with,
however, rather high operation counts, as shown in Table I,
where N is the number of elements and N, the number of

TABLEI

Methods, Finite Elements, and Operation Counts per Timestep

Method No. egs. Bandwidth (x/=) (+/—)
Galerkin
KdV Ny 7 123 W% N, 14l x N x Ny,
MKdv Ny 7 T5Tx Nyx N, 8B2x N, x N,
(cubic £ ¢}
Collocation
KdVv Ny+1 5 I6X N gx N, 36xNgx N,
(quintic f-e)
MEKd4dV Ny+1 4 TN x N, 32xNgx N,

{quartic f- e}

Note. Number of elements = N, number of iterations = N,,.

iterations per timestep. If the same approach is used for the
cubically non-linear MKdV equation the operation count
is increased significantly; by a factor ~7 per time step,
principally for the determination of the non-linear term.

A collocation method with quintic B-spline finite
elements has also been used for the numerical solution of the
KdV equation [10]. This results in a considerable reduc-
tion in the operation count; see Table VII. In fact, this
collocation approach produces a faster, unconditionally
stable, algorithm which is easy to implement and has a L,
error norm for a single soliton simulation comparable in
magnitude to that of the above Galerkin formulations. With
a collocation approach to the numerical solution ol the
MKdAV equation using quartic B-spline elements a set of
N, +1 quasi-linear equations for ¥, + ! unknowns with
bandwidth four is obtained. This numerical scheme which
has a lower operation count (see TableI) than others
described above, and is easier to implement, was therefore
chosen for the present study.

The choice of cubic B-splines for the Galerkin approach
to the solution of the KdV and MKdV equations is dictated
by the requirement that the interpoiation function should
have a continuous second derivative throughout the solu-
tion range so that the integral formulation is possible.
Similarly, a choice of quartic B-spline finite elements for the
collocation method is implied by the requirement of
continuity of the third derivative throughout the solution
range. Higher order splines which possess higher orders of
continuity could equaily weil be used but would result in
algorithms with higher operation counts.

In Section 2 a collocation method using quartic B-spiine
[10, 131 finite elements is set up which shows good conser-
vation and is both fast and accurate in performance. In
validation runs the homogeneous boundary conditions
described above are used, and in Section 5 forced boundary
conditions are applied at one end of a finite region and the
resulting states examined.

2. FINITE ELEMENT SOLUTION

A numerical solution for the MKdV equation in the nor-
malised form (1), over the region 0 < x < L, is developed.

SetupO0=xg<x, - <x,=1Lasapartition of [0, LT1by
the points x, into finite elements of equal size k=
(X, 41— X,), and let ¢,.{x} be those quartic B-splines with
knots at the points x=x,,. Then the set of splines {¢_,,
$_ 1y Gus Py Torms a basis for functions defined over
{0, L]. We seek the approximation u,(x, t) to the solution
u(x, 1) which uses these splines as trial functions [137:

N+

urx, )= 3 ,(x) (1)

j==2

(5)
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Each quartic B-spline covers five elements; thus each
element [x,,, x,,.,] is covered by five splines. Using a
local coordinate system I given by Al =x— x,,, where 0 €
{ < 1, expressions for the element splines are [13]

G _2=1—4L+602—aL>+*
G =11 =120 — 6L+ 1207 —4L°

Po=11+ 120 — 62— 120> + 60*
By =144+ 60>+ 40 -4
$ms2=C"

Over the element [x,,, x,,, ;] the variation of the function
u(x, 1) is given by

H(X, {}:éc'dez(ém—b ¢m71’¢m3 lﬁmﬂLl! ¢m+2)
x(ém—Za 5m—135m3 5m+155m+2)T' (7)

At the knot x,, the numerical solution uy(x, t) is given by

(6)

Up =01+ 118, +118, 1+, _>
hu,, =4(0,, ., +38,,—38,_ | —8,_1)
i, =12(8,,, =8, —08,_ 1+ 0.,_5)
ul=24(8,,, 1 —30,,+ 38,1 —8._2)

(8}

where the primes denote differentiation with respect to x.

We identify the collocation points with the knots, use
Egs. (8) to evaluate u,, and its space derivatives, and
substitute into (1) to obtain a set of coupled ordinary
differential equations, one for each knot:

5.m—2+ ll&‘m—l-l' l]5m+5m+l

4
—-f(ém_2+ 18, (+118,,+8,,, )}
x(§n172+35m71 _35m_‘5m+1)

24

'_h_ju(ém-—Z_:Sém—l+35m_5m+1)=0‘

Hence with a Crank—Nicolson approximation in time,
there is for each knot an equation relating parameters at
adjacent time levels, 6% ' to 87,

(1—Z2 "2 M) &L+ (11322424 3M) 601
+ (114321712 _3M) 80!
+(1+ 2257+ M) ont
=(14+Z"*"72 L M)é% _,
+ (11432752 3M) 8"
+ (11 =322+ 3M) 57,
+(1=Z2 VP M)

m+12

m=01, ..
(9)

7
where
Zn+1/2_§A[(5 + 118 +1168,,+ & )2
m _h n—2 m—1 m m+ 17
12
M=h—fm, (10)

1
—_ 5» "+1.
bn=3 En+03)

System (9) consists of ¥+ ! linear equations in ¥+ 4
unknowns. To obtain a unique solution to this system the
three additional constraints needed are obtained from the
boundary conditions:

gy, 5_2+115_]+1150+51=u0,

Uy="0, On_z+1105_ + 1155+, =0,

uy=0, In_r+30y_1—30y—3dn,1=0.

These conditions enable us to eliminate 6 _,, d 5, 6 .. ; from
Eq. (9) which then consists of N+ 1 lincar equations in
N+ 1unknowns,d=(3_, 0, ., Sy_2,0n_1)"

The time evolution of the approximate solution u ,(x, £)1s
determined by the time evolution of the vector d*. This is
found by repeatedly solving the recurrence relationship (%)
once the initial vector d® has been computed from the
nitial conditions. The recurrence relationship is defective
pentadiagonally so a direct algorithm for its solution exists;
an inner iteration is also needed at each time step to cope
with the non-linear term.

3. STABILITY ANALYSIS

A Neumann stability analysis is set up in which the

growth factor of the error in a typical Fourier mode

oy = &"et, (11)

where & is the mode number and 4 is the element size, is
determined for the linearised scheme.

The lincarisation is effected by supposing that #° in the
non-linear term is locally constant, which is equivalent to
assuming that in (10) all the &7 are equal to a local
constant d, so that Z,=Z = (2¢ 41/h)(24d )’ is a constant
for all j and Eq.(9) is linear. Substituting the Fourier

mode (11) into (9) leads to an error growth rate g of the
form

_auib

= 12
£ a+ib’ (12)
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where

a=12cos 1kh + 22 cos kh,

(13)
b=2(Z+ M)sin 3kh + 6(Z — M) sin Skh.
The modulus of |g| is therefore one and the linearised
scheme is unconditionally stable.

4. YALIDATION EXPERIMENT

To test the behaviour of the proposed aigorithm a single
soliton simulation is used. Take as initial condition Eq. (2)
withe=3, pu=1,and kp=13, x, =15, 1=0. At time t =0
the global trial function (5) becomes

N+1

up(x,0)=3% 487¢,(x).

j==2

To determine the N + 4 unknowns 5;.’ for the validation
experiment require u,(x, 0) to satisfy the following condi-
{ions;

(a) it shall agree with the initial condition u{x, 0} at the
knots xg, ..., X, leading to N + 1 conditions.

(b) its first two derivatives shall agree with those of the
exact condition at x,, 1e, w'{x,)=0 and u"(xy)=0: a
further two conditions,

(c) its first derivative shall agree with that of the exact
condition at x, i.e., #'{xy) = 0: a further condition.

This leads to the matrix equation

Md”=h,
where
[ —1 -3 3 1 =
1 =1 —1 1
i 11 11 1
M= ,
1 11 11 1
1 1 11 1
—1 -3 31

d°=(6_5,8_ 1,80, by, 0p_1)7,
and letting u; = u(x,),
b=1(0,0, 4y, ti1s .o i1, U 0)".
In this experiment step sizes of Ar=0.001 and #=0.04

over a range 0= x <40 are used. The soliton is observed to
move across the region with constant profile and velocity.

TABLE 1}
Single Soliton £ =0.04, 4r=0.001, 0 <x <40

Time  L,x 10° L x10} I8 I I 1,
0.0 0.00 0.00 44429  3.676945 2071337 1.050161
1.0 0.39 0.28 44429 3676946 2071338 1.050162
2.0 0.62 0.43 4.4429  3.676947 2.071337 1050162
30 0.76 0.52 4.4429 3676946 2071338 1.050163
40 (.89 0.60 44428 3676947 2.071336 1.050163
50 1.03 0.67 44428 3676944 2071336 1.050162
6.0 1.16 0.76 44428 3676945 2071338 1.050162
7.0 1.30 0.84 44429 3.676947 2071338 1.050162
8.0 1.44 092 44430 3.676945 2071338 1.050162
9.0 1.98 1.25 44430  3.676945 2071337 1.050162

10.0 252 1.57 44430 3.676944 2071337 1050163

The error norms obtained for this validatory simulation,
given in Table 11, are satisfactorily small, both rising to less
than 2 x 10 ~* kp at time ¢ = 10, where kp is the amplitude of
the soliton. The soliton amplitude changes from its initial
value of 1.3 to 1.29972 by the end of run at 1 = 10; that is, by
only 2x 107°%. The invariants, also listed in Table II,
show good conservation; [, [, and [, remain constant to
five decimal places throughout the run at I,=3.676%4,
I;=2.07133, and I,= 1.05016, changing only in the sixth
decimal place, while J, changes from 4.4429% by only +1 in
the fourth decimal place.

To make comparisons with published work {4], use as
the initial condition Eq. (2) at r=0 with k=1.0, x,=15,
and e=6, p=1 so that p=10. Space and time steps are

TABLE I

Comparison of Single Soliton, Amplitude = 1, Simulations
with Results from [47, Table [

h I = Iy I3 Iy

Method At Time L I I
B-spline Q.1 025 00012 —0.00002 —0.00007
025 05 00018  —0.00004 —0.00014
1.0 00022 —0.00009 —0.00030
A-L global 0.1 025 0.0019 0.00009 0.00486
0.25 05 00028 0.00017 Q.00508
1.0 0.0045 0.00033 0.00536
A-L local 0.06 0.25 0.0023 0.00002 0.00168
0.12 0.5  0.0032 0.00003 0.00171
1.0 0.0047 0.00006 0.00177
Implicit(C-N} 008 0.25 00023 0.00002 0.00297
o1 0.5 00031 0.00003 0.00298
1.0 0.0045 0.00005 0.00303
Pseudospectral  0.625  0.25 00026  —0.00120 —0.02976
0.0055 05 0.0041 0.00218 0.07897
10 00046 —0.00143 —0.03534
Tappert 03125 025 0.0036 0.00000 —0.00010
00041 05 00041 0.00000 —0.00013
1.0 0.0047 0.00000 0.00001
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chosen so that L <0.005 at 7r=1.0. The results are
compared in Table Il with others reported by Taha and
Ablowitz [4] using a variety of explicit and implicit
schemes, the local and global schemes proposed by
Ablowitz and Ladik and the pseudospectral scheme of
Fornberg and Whitham. Relative changes in the values of 7,
and I, are compared at various times; the values at time
t=0 are denoted by I,, and I;,. The present method
performs well.

5. SIMULATIONS

The generation of solitary waves by boundary forcing the
MKdV equation at x = 0 for the finite region 0 < x € x,, is
studied. Initially the region is undisturbed so that at time
t=0 all §, are zero.

The forced boundary condition applied at x =0 is

t
Uy, O0<t<,
T
u(0, )=+« Uy, T<t<ty—T1, (14)
fo—1
U, 2—,  ty—1<i<to.
T

Further hoemogeneous boundary conditions are imposed at
X=Xmax-

The effect of the impulse is to generate solitary waves at
x =0, which grow until they achieve a terminal amplitude,
determined by the magnitude of the forced boundary value.
Solitary waves are continually generated while the forcing
conditions prevail; then all growth slows and eventually
Ceases.

5.1. Long Impulse

Boundary condition (14) is used with x,,, =80,
fmae = 10, Uy=1, 1=0.01, 1, =10, so that the forcing lasts

.
FAES
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FIG. 1. Long impuise. Solitons produced by forced conditions (14)
with Uy=1, 1=001, t{y= o0, h=0.04, A1 =0.001 graphed at =15 {(—~)
and =10 ( ).e=6.
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FIG. 2. Long impulse. The evolution of the sotiton amplitudes. Forced

conditions {14) with Uy =1, 1 =001, 1, = oo, 1 =004, Ar=0001; 6 =6.

throughout the experiment. The values e=6, u=1 are
taken so that p=1. The step lengths are #=004 and
Ar=0.001.

In this numerical experiment, see Fig. 1, five solitary
waves are generated before the simulation is terminated at
¢=10. Figures 2 and 3 show that four achieve their terminal
heights and a constant velocity. The generating conditions
for the first wave are rather more protracted than those for
all subsequent waves, as can be seen from the graphs of the
first two derivatives at x =0 given in Figs. 4 and 5, so it
achieves a slightly larger amplitude and velocity than do the
following waves. The observations are collected in Table IV.
The time interval between births of solitary waves is
constant at 47, =1.82, the measured terminai heights for
solitary waves 2—4 vary between 2.147 and 2.148 with
measured velocities of 4.62. Free solitons of similar heights
would have velocities 4.610-4.614, so that agreement is
close.

After an initial transient the graph of u.(0, 1), Fig. 4,

2 H & 13 & 7 L] e "

Time

FIG. 3. Long impulse. The space-time graphs of the solitons produced
by [14) with Uy=1, 1=001, ty =00, h =004, 4r=0001;e=6.
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Ml/\/\/\/\/\
VARV ERRYERRY

15T DERIVATIVE

2 3 “ k3 & ‘ [ ° 18

TIME

FIG. 4, Long {mpulfse. Variation in the {irst derivative u (Q, 1) at the
origin. Forced conditions (14) with Uy=1, t=001, 1y= 00, h=0.04,
Ar=0001; e=6.

shows a rounded saw tooth periodic behaviour with maxi-
mum of about 0.4, a minimum of about 0.33, mean zero, and
period 1.82. The graph of u, (0, ), Fig. 5, also exhibits
periodic behaviour with period 1.82. Rewrite Eq. (1) as an
expression for u,., and evaluate at x=0 to give

tyenl0, 1) = ‘,11 (40, 1)+ (0, (0, 1)), (15)

With the forcing Uy =1 and g =1, ¢ =6, this reduces to

u.t.r.r(os t} = - 61“‘!(09 []‘ ( 16)

The simulation produces differentials at the origin which
reflect this relationship, By comparing Figs. 2, 4, and 5 we
observe that the birth of a solitary wave occurs at times
when « (0, 1) =90, and u, (0, 1} is a minimum and negative,

2ND DERIVATIVE

N N
.

1 2 ) + ) & ? L] L) 0]
TIME
FIG. 5. Long impuise. Vanation in the second dernvative u (0, ) at
the origin. Forced conditions (14) with /5= 1, 1 =001, 1, =00, h=0.04,
At=0001;e=6.

TABLE IV
Observations of Solitary Waves, Up,=1,:=6

Generated waves Free soliton
Wave Birth time Amplitude Velocity Velocity
\ 1040 2155 4.64 4.644
2 2.920 2148 4.62 4.614
3 4,740 2.147 4.62 4.610
4 6.560 2.147 462 4610
5 8.380 2.058 427 4.235

while a solitary wave reaches maturity about 13 periods
iater when again {0, £) 1s a maximum and posmve.

An experiment with reduced forcong, U/, =0.5; boundary
condition (14) is used with x, =80, 7., =80, =001,
to=80. The forcing lasts throughout the experiment. The
numerical step lengths are 1 = 0.04 and A7 = 0.001. Observa-
tions on the solitary waves generated are collected in
Table V. The period between births is 47, = 14.632.

An experiment with increased forcing, I/, = 2; boundary
condition (14} is used with x_,, =24, r .. =15 =01,
to=1.5. The forcing again lasts throughout the experiment.
The numerical step lengths are h=001 and 4:=0.0005.
It is observed that solitary waves arc generated with
period 475 =0.2271, and, apart from the initiai wave, all
subsequent waves attain a terminal height of 4.295 with
velocity 18.25, which compares well with the free soliton
velocity of 18.28.

3.2. Short Impulse

In this simulation boundary condition (14) is used with
Uy=1, =001, 1, =4, h=0.04, and 47 =0.001. The values
£=23, u=1 are taken so that p = 1.4142. Two solitary waves
are generated in the experiment, of which only the first, born
at ¢ =2.84, reaches its mature amplitude 2.15 and velocity
2.31; the second, born at r=8.14, grows to an amplitude
1.43 with a velocity 1.02.

The invariants I, (Eq. (3)), are only constant when the

TABLEV
Observations of Solitary Waves, Uy =0.5,=06

Generated waves Free soliton

Wave Birth time Amplitude Velocity Velocity
1 8.08 1.0783 1164 1,163
2 23119 1.0749 1.155 1.155
3 37.751 1.0743 1,152 1.154
4 52.303 1.0745 1.152 1.155
5 66.515 0.5014 0.25t
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boundary conditions ¥ -0 as x-— +o hold. With the
forcing conditions (14) it is found that they vary in the
following ways:

L =10+ {% £} (0, 1) + a0, z)} dt
0
L =50)+ ]’ {% (0, 1)+ (0, 1) (0, 1)
Q
1
—-Euui{O, t)} dt

()= 1500+ | {5 00,0+ 400, 0 0,0,

u?

+6-u2 (0.0 -12 g (0, 1) u,(0, z)} dt

L(1)=1,(0)+ j {— % £®(0, 1) + p{45u%(0, 1) u(0, 1)
G

- 6“5(0, t) u.rx(OJ t)}

2
+3 ’“; £206%(0, 1) u (0, 1) u__(0, 1)

XYY (

— 16u%(0, 1) u? 20, I)—u A0, 1)
~20u(0, 1) ui(O, t)u, (0, 1)}

3
+36f:_2{; r\:t(O t)_u ( ) rrxx(() t)}}d

Using (15) it can be shown that the variation of the J;
depends only on the behaviour of u(0, ), u,.(0, 1), and
(0, t). Hence over the time period 0 < < 11, with £ =3,
u=1,and 0(0, r) =1 the variation in quantities /is given by

L={ {14u.0,0}di

Q

B0 = [ {3+ 10,0~ 520, 0} a

()= {2+ 4,00, 0+ 26,00,1)} dt
Q

14(f)=jn’ {24 3u2(0, 1) — 412 (0, 1) — 61 (0, 1)

—ut(0, 1)+ 4(0, 1) u.(0, 1)
+4u (0, 1) u (0, 1)} dt,
so that all change continuously, although the rates wili vary

stiice all three integrands vary periodically as is illustrated
by the graphs of (0, t) and u (0, {) given in Figs. 4 and 5.

TABLE V1

Invariants for Forced Conditions with f4=11, U= 1

Time f I 1y Iy
0 0.0000 0.0000 (.0000 0.0000
3 2.1478 1.4277 04819 79.110
6 5.0569 56259 7.2503 357.44
9 7.0409 7.9485 10.380 1498.8
12 8.7486 10.175 12,222 1918.6
15 8.8961 10.156 12.244 1888.6
18 8.9055 10,156 12.244 18916
2 8.9043 10.156 12.244 1892.8
24 8.9026 10156 12.244 1893.3
27 89011 10.136 12.244 1893.3
30 8.8999 10.156 12.244 1893.3

When the forcing is turned off at r=11, for r>11,
u(0, 1)=10; but as the derivatives u (0, /) and u (0, 1) are
not themselves forced to become zero, the I, do not
immediately cease to vary. In the simulations the switching
operation causes a spike in the derivative graphs, and subse-
quently u (0, #) and u (0, 1) tend to zero at about the same
rate. Thus /, continues to change, increasing or decreasing
according to the sign of u, (0, 1), through

4
L) =L+ (0, 1) dr,
11
I, starts to decrease through

Liny=1(1)= | (0, 0y dr;
11

and [, to increase through

L{=L(11) +2j (0, 1) dr;
and [, changes through
T(1)=1,(11) J {u0, 1) — 4u..(0, 1) u (0, 1)} dL.

TABLE VII

Mean Observations of Solitary Waves:
Long Impulse, Various Forcing

£ P U, ATy Amplitude Velocity
6 10 0.5 14.552 1.0746 1.153
6 1.0 1.0 1.82 2.147 4,62
6 1.0 20 0.2271 4.295 18.25
3 1.4142 0.5 41.25 1.073 0.572
3 1.4142 1.0 5.15 2.147 231
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These equations also imply that the development of the last
formed solitary wave does not stop abruptly when the
forcing is switched off, but that it continues until « {0, 1)
and u, (0, r) have decayed to zero. After a time of about
t =15, when the influences of forcing have died away, the
quantities 7, should remain constant. The above conclusions
are illustrated by the measured values of the invariants
given in Table VL

6. DISCUSSION

The numerical solution algorithm for the MKdV equa-
tion, based on collocation of quartic B-splines over finite
elements, described in Section 2, is validated in Section 4 by
a single soliton simulation, which shows good conservation
and accuracy, :

The simulation reported in Section 5 show that constant
positive boundary forcing produces a train of solitary waves
of like amplitude and velocity generated at a constant rate.
The initial wave has a slightly larger amplitude due to a
switch-on effect. This behaviour is qualitatively similar to
that of the KdV equation under identical condi-
tions [ 5, 6, 11].

Characteristic results for the numerical experiments on
positive boundary forcing for various parameter values are
listed in Table VII. It is deduced that solitary waves are
generated with period 4T ,=1.82(p/Uy)°, amplitude
2147x Uy, and velocity 4.62x U}, where U, is the
magnitude of the forcing; the definition of p follows Eq. (2).

The birth times recorded in Tables IV and V and referred
to in the text are those at which a solitary wave starts to
traverse the region. Some short time before this the solitary
wave is conceived at the origin as a localised disturbance
which begins to develop. If the forcing is removed before
separation from the origin (birth) occurs the solitary wave
never forms and the small local disturbance which remains
located near the origin dies’ away as the simulation
proceeds.

In further simulations it has been shown that negative
forcing, — Uy, produces negative solitary waves of equal
amplitude to those produced by positive forcing, U,. The
final state, produced when a positive impulse is followed by

an equal negative impulse, depends on the periodicity of the
forcing as well as its magnitude.

The solitary waves generated by boundary forcing have
amplitudes and velocities consistent with those of the free
soliton solution of the MKdV equation and when they
interact they behave similarly and show the expected phase
shifts 3, Eq. (3). Although these observations are subject to
experimental error they tend to support the idea that these
solitary waves are indeed identical with free solitons,

It has been shown that the collocation method with
quartic B-spline finite clements can faithfully represent the
amplitude, position, and velocity of a single soliton and that
the generation of solitons by boundary forcing is modelled
satisfactorily.
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